ABDULLAH GÜL UNIVERSITY GRADUATE SCHOOL OF ENGINNERING & SCIENCE INDUSTRIAL ENGINEERING DEPARTMENT COURSE DESCRIPTION AND APPLICATION INFORMATION							
Course Name	Code	Semester	T+P (Hour)	Credit	ECTS		
Nonlinear Optimization	IE 516	Fall - Spring	3 + 0	3	10		

Prerequisites IE 511 Modelling and Optimization or equivalent

ŗ

Course Type	Elective
Course Language	English
Course Coordinator	Assistant Professor Selçuk Gören
Course Instructor	Assistant Professor Selçuk Gören
Course Assistant	-
Course Objective	This course introduces students to the basic theory of nonlinear programming. In the course, theoretical methods for determining the characteristics of optimal solutions, as well as computational methods for finding optimal solutions with computers, and convergence features of these methods are given with equal prefix. As a software, it is necessary to use solvents such as BARON, CONOPT, MINOS in a package such as GAMS, and to encode basic methods in basic programming languages.
Course Learning Outcomes	 A student who successfully completes this course, 1. Problems encountered in practice can be formulated as nonlinear optimization problem, 2. Look for non-linear models are convex, 3. Apply basic complete solution methods to solve these models, 4. Develop decomposition methods for large-scale problems, 5. These methods can be applied to solve problems
Course Content	 Nonlinear optimization problems and their formulations, Unconstrained optimization and limited optimization Gradient methods, projection methods The characteristics of the optimal solutions, sufficient and necessary conditions for optimality, Duality, Semidefinite programming

WEEKLY SUBJECTS AND RELATED PRELIMINARY PREPARATION PAGES					
Week	Subjects	Preliminary			
1	Unconstrained optimization and optimality conditions				
2	Gradient based solution methods (Newton vs)				
3	constrained optimization				
4	Optimality conditions in constrained optimization				
5	Projection in equality constrained problems				
6	Projection methods, punishment methods				
7	Midterm Exam, Project development report and presentation				
8	Barrier, Conditional Gradian methods				
9	Inner point methods for linear programming				
10	Convex analysis				
11	Duality				
12	Duality				
13	Gradient suboptimization				
14	Semidefinite programming				
15	Repetition, advanced topics				
16	Project presentations, Final exam				

SOURCES	
Lecture Notes	Lecture notes and slides of the course will be shared with students during the semester via CANVAS system.
Other Sources	Textbook:

Bertsekas, Dimitri P. Nonlinear Programming. Athena Scientific Press, 2016.

Supplementary Textbooks:

Bazaraa, Mokhtar S., Hanif D. Sherali, ve C. M. Shetty. *Nonlinear Programming: Theory and Algorithms.* New York: John Wiley & Sons, 2006

MATERIAL SHARING			
Documents	will be shared with students during the semester via CANVAS system.		
Homework	will be shared with students during the semester via CANVAS system.		
Exams	1 (one) midterm exam and 1 (one) final exam. 2 exams in total		

EVALUATION SYSTEM		
ACTIVITIES	QUANTITY	WEIGHT
Midterm Exam	1	%20
Quiz	5	%15
Homework	5	%15
Project	1	%20
Final Exam	1	%30
TOTAL		%100
Midterm Activities Percentage		%70
Final Exam Percentage		%30
TOTAL		%100

Course Category	
Natural Sciences and Mathematics	%40
Engineering Sciences	%60
Social Sciences	%0

LEARNING OUTCOMES AND PROGRAM QUALIFICATIONS RELATIONSHIP							
No	Program Qualification	Cont	Contribution Level				
		1	2	3	4	5	
1	PQ1.					Х	
2	PQ2.				Х		
3	PQ3.		Х				
4	PQ4.			Х			
5	PQ5.				Х		
6	PQ6.			Х			

*Increasing from 1 to 5.

ECTS / WORK LOAD TABLE					
Activities	Activity	Duration (Hour)	Total Work Load		
Course Duration (including exam week: 16x total course hours)		3	48		
Out-of-class Study Time (Pre-study, practice)		4	64		
Reading		1	16		
Internet browsing, library work		1	10		
Project		5	50		
Report Preperation		15	30		
Presentation Preperation		5	5		
Presentation		2	4		
Homework		5	25		
Quiz		0,2	1		
Midterm		20	20		

Final Exam	30	30
Total Work Load		303
Total Work Load / 30		10.1
Course ECTS CREDİT		10